Particle size distributions from laboratory-scale biomass fires using fast response instruments

نویسندگان

  • S. Hosseini
  • Q. Li
  • D. Cocker
  • D. Weise
  • A. Miller
  • M. Shrivastava
  • J. W. Miller
  • S. Mahalingam
چکیده

Particle size distribution from biomass combustion is an important parameter as it affects air quality, climate modelling and health effects. To date, particle size distributions reported from prior studies vary not only due to difference in fuels but also difference in experimental conditions. This study aims to report characteristics of particle size distributions in well controlled repeatable lab scale biomass fires for southwestern United States fuels with focus on chaparral. The combustion laboratory at the United States Department of Agriculture-Forest Service’s Fire Science Laboratory (USDA-FSL), Missoula, MT provided a repeatable combustion and dilution environment ideal for measurements. For a variety of fuels tested the major mode of particle size distribution was in the range of 29 to 52 nm, which is attributable to dilution of the fresh smoke. Comparing mass size distribution from FMPS and APS measurement 51–68% of particle mass was attributable to the particles ranging from 0.5 to 10 μm for PM10. Geometric mean diameter rapidly increased during flaming and gradually decreased during mixed and smoldering phase combustion. Most fuels produced a unimodal distribution during flaming phase and strong biomodal distribution during smoldering phase. The mode of combustion (flaming, mixed and smoldering) could be better distinguished using the slopes in MCE (Modified Combustion Efficiency) vs. geometric mean diameter than only using MCE values. Correspondence to: H. Jung ([email protected])

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mobile laboratory with rapid response instruments for real-time measurements of urban and regional trace gas and particulate distributions and emission source characteristics.

Recent technological advances have allowed the development of robust, relatively compact, low power, rapid response (approximately 1 s) instruments with sufficient sensitivity and specificity to quantify many trace gases and aerosol particle components in the ambient atmosphere. Suites of such instruments can be deployed on mobile platforms to study atmospheric processes, map concentration dist...

متن کامل

Ultrafine and respirable particle exposure during vehicle fire suppression.

Vehicle fires are a common occurrence, yet few studies have reported exposures associated with burning vehicles. This article presents an assessment of firefighters' potential for ultrafine and respirable particle exposure during vehicle fire suppression training. Fires were initiated within the engine compartment and passenger cabins of three salvaged vehicles, with subsequent water suppressio...

متن کامل

Three-dimensional Modelling on the Hydrodynamics of a Circulating Fluidised Bed

The rapid depletion of oil and the environmental impact of combustion has motivated the search for clean combustion technologies. Fluidised bed combustion (FBC) technology works by suspending a fuel over a fast air inlet whilst sustaining the required temperatures. Using biomass or a mixture of coal/biomass as the fuel, FBC provides a low-carbon combustion technology whilst operating at low tem...

متن کامل

Performance evaluation of newly developed portable aerosol sizers used for nanomaterial aerosol measurements

Nanomaterial particles exhibit a wide range of sizes through the formation of agglomerates/aggregates. To assess nanomaterial exposure in the workplace, accurate measurements of particle concentration and size distribution are needed. In this study, we evaluated the performance of two recently commercialized instruments: a portable scanning mobility particle sizer (SMPS) (NanoScan, TSI Inc.), w...

متن کامل

Scanning Mobility CCN Analysis: A method for fast measurements of size-resolved CCN distributions and activation kinetics

We present Scanning Mobility CCN Analysis (SMCA) as a novel method for obtaining rapid measurements of size-resolved cloud condensation nuclei (CCN) distributions and activation kinetics. SMCA involves sampling the monodisperse outlet stream of a Differential Mobility Analyzer (DMA) operated in scanning voltage mode concurrently with CCN and condensation particle counters. By applying the same ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010